موتور محرکه پلاسما
موتور محرکه پلاسما، نوعی پیشرانه پیشرو الکتریکی است که کاربرد فراوانی در حال و آینده فناوری فضایی دارد.
تصویر: اجرای هنرمندانه موتور پلاسمای VASIMR
موتور محرکه پلاسما نوعی پیشرانه الکتریکی است که نیروی رانش را از یک پلاسمای شبه خنثی تولید می کند. این در تقابل با موتورهای رانشگر یونی است که از طریق استخراج جریان یونی از منبع پلاسما نیروی رانش تولید میکنند، که سپس با استفاده از شبکهها/آندها تا سرعتهای بالا شتاب میگیرد. این موتورها به اشکال مختلف وجود دارند. با این حال، در ادبیات علمی، اصطلاح "رانشگر پلاسما" گاهی اوقات پیشرانه هایی را که معمولاً به عنوان "موتورهای یونی" معرفی می شوند، در بر می گیرد.
رانشگرهای پلاسما معمولاً از شبکه های ولتاژ بالا یا آند/کاتد برای شتاب بخشیدن به ذرات باردار در پلاسما استفاده نمی کنند، بلکه از جریان ها و پتانسیل هایی استفاده می کنند که به طور داخلی تولید می شوند تا یون ها را شتاب دهند و در نتیجه با توجه به فقدان ولتاژهای شتاب دهنده بالا، سرعت اگزوز کمتر می شود.
این نوع رانشگر دارای چندین مزیت است. فقدان شبکه های ولتاژ بالای آندها، یک عنصر محدود کننده احتمالی ناشی از فرسایش یون شبکه را حذف می کند. اگزوز پلاسما "شبه خنثی" است، به این معنی که یونها و الکترونهای مثبت به تعداد مساوی در آن جا وجود دارند، که به نوترکیب ساده یون-الکترون در اگزوز اجازه میدهد تا ستون خروجی را خنثی کند و نیاز به تفنگ الکترونی (کاتد توخالی) را از بین ببرد. چنین رانشگری اغلب با استفاده از فرکانس رادیویی یا انرژی مایکروویو و با استفاده از یک آنتن خارجی، پلاسمای منبع را تولید می کند. این واقعیت، همراه با عدم وجود کاتدهای توخالی (که به همه گازها به جز گازهای نجیب حساس هستند)، امکان استفاده از این رانشگر را بر روی انواع پیشرانهها، از مخلوطهای هوای آرگون گرفته تا دی اکسید کربن و ادرار فضانوردان، امکان پذیر میسازد.
رانشگرهای پلاسما پالسی (PPTs) (Pulsed plasma thrusters) رانشگرهای الکتریکی با تکانه های ویژه بالا، اما در عین حال کم توان هستند. رانشگرهای پلاسمای پالسی برای کاربرد در فضاپیماهای کوچک برای کنترل وضعیت، کنترل دقیق فضاپیما و مانورهای کم رانش ایده آل هستند.موتورهای پلاسما برای مأموریتهای بین سیارهای مناسبتر هستند.
سیستمهای محرکه پلاسما را بسیاری از آژانسهای فضایی توسعه دادند، از جمله آژانس فضایی اروپا، آژانس فضایی ایران و دانشگاه ملی استرالیا که با همکاری یکدیگر یک رانشگر دولایه را توسعه دادند.
تاریخچه
برخی از موتورهای پلاسما زمانِ پرواز فعال و استفاده شدن در ماموریت ها را دیده اند. در سال 2011، ناسا با Busek برای پرتاب اولین رانشگر اثر هال بر روی ماهواره Tacsat-2 همکاری کرد. رانشگر، سیستم پیشرانه اصلی ماهواره بود. این شرکت در آن سال یک رانشگر اثر هال دیگر راه اندازی کرد. در سال 2020، تحقیقاتی بر روی یک جت پلاسما توسط دانشگاه ووهان منتشر شد.شرکت Ad Astra Rocket در حال توسعه VASIMR است. شرکت کانادایی Nautel ژنراتورهای RF 200 کیلوواتی مورد نیاز برای یونیزه کردن پیشرانه را تولید می کند. برخی از آزمایشهای اجزا و آزمایشهای "شات پلاسما" در آزمایشگاهی در لیبریا، کاستاریکا انجام میشود. این پروژه توسط فضانورد سابق ناسا دکتر فرانکلین چانگ دیاز (CRC-USA) هدایت می شود.
اتحادیه هوافضای کاستاریکا از توسعه پشتیبانی خارجی برای VASIMR در خارج از ایستگاه فضایی بینالمللی خبر داد. انتظار می رفت این مرحله از طرح آزمایش VASIMR در فضا در سال 2016 انجام شود.
مزایا
موتورهای پلاسما نسبت به بسیاری از انواع دیگر فناوری موشک، مقدار تکانه ویژه بسیار بالاتری دارند. رانشگر VASIMR می تواند تکانه ای بیشتر از 12000 ثانیه داشته باشد و تکانه رانشگرهای هال به حدود 2000 ثانیه رسیده اند. این پیشرفت قابل توجهی نسبت به سوخت های دوگانه پیشرانه موشک های شیمیایی معمولی است که دارای تکانه های ویژه تقریباً 450 ثانیه هستند. رانشگرهای پلاسما با تکانه زیاد قادر به رسیدن به سرعت های نسبتاً بالایی در دوره های طولانی شتاب هستند. فضانورد سابق فرانکلین چانگ دیاز ادعا می کند که رانشگر VASIMR می تواند در کمتر از 39 روز محموله ای را به مریخ بفرستد، در حالی که به حداکثر سرعت 34 مایل در ثانیه (55 کیلومتر بر ثانیه) می رسد.برخی رانشگرهای پلاسما، مانند مینی هلیکون، به دلیل سادگی و کارایی خود مورد تحسین قرار می گیرند. تئوری عملکرد آنها نسبتاً ساده است و می تواند از انواع گازها یا ترکیبات استفاده کند.
این ویژگیها نشان میدهد که رانشگرهای پلاسما برای بسیاری از نمایههای ماموریت، ارزش دارند.
اشکالات
احتمالاً مهم ترین چالش برای بقای رانشگرهای پلاسما، نیاز آنها به انرژی است. به عنوان مثال، موتور VX-200 برای تولید نیروی رانش 5 نیوتن به توان الکتریکی 200 کیلووات یا 40 کیلووات بر نیوتن نیاز دارد. این توان مورد نیاز ممکن است توسط راکتورهای شکافت برآورده شود، اما جرم راکتور (از جمله سیستمهای دفع گرما) ممکن است بازدارنده باشد.چالش دیگر فرسایش پلاسما است. در حین کار، پلاسما میتواند دیوارههای حفره رانشگر و ساختار تکیهگاه را از نظر حرارتی از بین ببرد، که در نهایت این میتواند منجر به شکست سیستم شود.
موتورهای پلاسما به دلیل نیروی رانش بسیار کم، برای پرتاب به مدار زمین مناسب نیستند. به طور متوسط، این موشک ها حداکثر 2 پوند رانش را ارائه می دهند. رانشگرهای پلاسما در فضای باز بسیار کارآمد هستند، اما هیچ کاری برای جبران هزینه های مداری موشک های شیمیایی نمی توانند انجام دهند.
انواع موتور
رانشگر پلاسمای هلیکن
رانشگرهای پلاسمای هلیکن از امواج الکترومغناطیسی با فرکانس پایین (امواج هلیکن) استفاده می کنند که در داخل پلاسما در معرض میدان مغناطیسی ساکن قرار می گیرند. یک آنتن RF که در اطراف یک محفظه گاز پیچیده می شود، این امواج را ایجاد و گاز را تحریک و پلاسما ایجاد می کند. پلاسما با سرعت بالا برای تولید نیروی رانش از طریق استراتژیهای شتاب که به ترکیبهای مختلفی از میدانهای الکتریکی و مغناطیسی با توپولوژی ایدهآل نیاز دارند، خارج میشود. آنها به دسته رانشگرهای بدون الکترود تعلق دارند. این پیشرانهها از چندین پیشران پشتیبانی میکنند و برای مأموریتهای طولانیتر مفید هستند. آنها را می توان از مواد ساده از جمله یک بطری شیشه ای نوشابه ساخت.رانشگرهای مگنتوپلاسمادینامیک
رانشگرهای مگنتوپلاسمادینامیک (MPD) از نیروی لورنتز (نیروی ناشی از برهمکنش بین میدان مغناطیسی و جریان الکتریکی) برای تولید نیروی رانش استفاده می کنند. بار الکتریکی که در حضور میدان مغناطیسی از پلاسما عبور می کند باعث شتاب گرفتن پلاسما می شود. نیروی لورنتس همچنین برای عملکرد بیشتر رانشگرهای پالسی پلاسما بسیار مهم است.رانشگرهای مگنتوپلاسمادینامیک (MPD) از نیروی لورنتز (نیروی ناشی از برهمکنش بین میدان مغناطیسی و جریان الکتریکی) برای تولید نیروی رانش استفاده می کنند.
رانشگرهای القایی پالسی
رانشگرهای القایی پالسی (PIT) نیز از نیروی لورنتس برای تولید نیروی رانش استفاده می کنند، اما از الکترود استفاده نمی کنند و مشکل فرسایش را حل می کنند. یونیزاسیون و جریان های الکتریکی در پلاسما توسط یک میدان مغناطیسیِ به سرعت متغیر القا می شوند.رانشگرهای پلاسمای بدون الکترود
رانشگرهای پلاسمای بدون الکترود از نیروی محرکه ای استفاده می کنند که بر روی هر پلاسما یا ذره باردار، زمانی که تحت تأثیر گرادیان چگالی انرژی الکترومغناطیسی قوی قرار می گیرد، برای شتاب دادن به الکترون ها و یون های پلاسما در یک جهت و در نتیجه بدون خنثی کننده، عمل می کند.VASIMR
VASIMR، مخفف Variable Specific Impulse Magnetoplasma Rocket (موشک مغناطوپلاسمای دارای تکانه ویژه متغیر)، از امواج رادیویی برای یونیزه کردن یک پیشرانه به درون پلاسما استفاده می کند. سپس یک میدان مغناطیسی پلاسما را از موتور شتاب می دهد و نیروی رانش ایجاد می کند. یک موتور 200 مگاواتی VASIMR می تواند زمان سفر از زمین به مشتری یا زحل را از شش سال به چهارده ماه و از زمین تا مریخ را از 6 ماه به 39 روز کاهش دهد.
پیشرانه الکتریکی پیشرفته
همان طور که گفته شد موشک های شیمیایی کاربرد محدودی برای کاربردهای فضایی دارند، زیرا نسبت به سرعت مورد نیاز برای حرکت مؤثر در منظومه شمسی، سوخت نسبتاً آهسته است (تکانه ویژه کم است). در نتیجه سیستم های شیمیایی، خیلی بزرگ هستند و زمان سفر برای مأموریت ها، بسیار طولانی است. تحقیقات در این زمینه برای توسعه پیشرانها، سریع است که این می تواند کاهش قابل توجهی در هزینه و زمان سفر ایجاد کند. برای دستیابی به این کارایی، سیستمهای پلاسما (یعنی ذرات باردار) مورد نیاز هستند که در آن میدان الکتریکی و مغناطیسی میتواند برای شتاب دادن به پیشرانههای پلاسما به سرعتهایی بیش از یک مرتبه بزرگتر از سرعتی که توسط موشکهای شیمیایی به دست میآید، استفاده شود. سیستم های زیر جزئیات دستگاه های در حال توسعه فعال را نشان می دهد.حوزه های فعال مورد علاقه:
HPH یا هلیکن با توان بالا یک رانشگر پلاسمای بدون الکترود است که میتواند از یک کیلووات تا 100ها کیلووات کار کند و سطوح رانشگر تا چندین نیوتن نیرو را با قدرت و راندمان گاز بالا تولید کند.
M2P2 یا پیشرانه پلاسمای مینی مغناطیسی (Mini-Magnetospheric Plasma Propulsion) سیستمی است که می تواند از انرژی باد خورشیدی برای تقویت نیروی محرکه داخل فضاپیما برای پیشرانش فضاپیما استفاده کند و در عین حال توان مورد نیاز فضاپیما را به حداقل برساند. پتانسیل محافظت در برابر تشعشع هنوز در دست بررسی است.
MagBeam ویژگیهای کلیدی M2P2/PlasmaMagnet را با منابع پلاسمایی پرتوی پرقدرتی مانند HPH ترکیب میکند تا سیستمی را تولید کند که در آن فضاپیماهای بزرگ در مدار میتوانند برای انتقال محموله بین سیارات با هزینه بسیار کم استفاده شوند و در نتیجه حضور دائمی انسان در فضا را تسهیل کنند.
اهنربای پلاسمایی یا PlasmaMagnet توانایی ایجاد سیستم های مغناطیسی بزرگ را بدون نیاز به آهنرباهای از قبل موجود دارد. این سیستم ها قابلیت های جدیدی را برای بادبان های پلاسما و محافظت در برابر تشعشع فراهم می کنند.
رانشگرهای پلاسمایی پالسی
رانشگرهای پلاسما پالسی (PPTs) (Pulsed plasma thrusters) رانشگرهای الکتریکی با تکانه های ویژه بالا، اما در عین حال کم توان هستند. رانشگرهای پلاسمای پالسی برای کاربرد در فضاپیماهای کوچک برای کنترل وضعیت، کنترل دقیق فضاپیما و مانورهای کم رانش ایده آل هستند. PPT های فرسوده با استفاده از پیشرانه های جامد، مزایای ماموریت را از طریق سادگی سیستم و تکانه ویژه بالا ارائه می دهند. این سیستم ها از خواص طبیعی پلاسما برای تولید رانش و سرعت های بالا با مصرف سوخت بسیار کم بهره می برند.پلاسما چیست؟
تصویر:PPT در عملیات. اعتبار: ناسا
یک یون به سادگی یک اتم یا مولکول است که بار الکتریکی دارد. یونیزاسیون فرآیند شارژ الکتریکی یک اتم یا مولکول با افزودن یا حذف الکترون است. یون ها می توانند مثبت (زمانی که یک یا چند الکترون از دست می دهند) یا منفی (زمانی که یک یا چند الکترون به دست می آورند) باشند. یک گاز زمانی یونیزه شده در نظر گرفته می شود که برخی یا تمام اتم ها یا مولکول های موجود در آن به یون تبدیل شوند. پلاسما یک گاز خنثای الکتریکی است که در آن همه بارهای خالص مثبت و منفی - از اتم های خنثی، الکترون های با بار منفی و یون های با بار مثبت - به صفر می رسند. پلاسما در همه جای طبیعت وجود دارد. به عنوان حالت چهارم ماده (بقیه حالت ها جامد، مایع و گاز هستند) تعیین می شود. برخی از خواص گاز را دارد اما تحت تأثیر میدان های الکتریکی و مغناطیسی قرار می گیرد و رسانای خوبی برای جریان الکتریسیته است. پلاسما بلوک ساختمانی برای همه انواع پیشرانه های الکتریکی است، که در آن از میدان های الکتریکی و/یا مغناطیسی برای فشار دادن یون ها و الکترون های باردار الکتریکی برای ایجاد نیروی رانش استفاده می شود. نمونه هایی از پلاسماهایی که هر روز دیده می شوند رعد و برق و لامپ های فلورسنت هستند.
عملیات PPT
PPT شامل دو الکترود است که در نزدیکی منبع پیشران قرار دارند. یک واحد ذخیره انرژی (ESU) (energy storage unit) یا خازن که به موازات الکترودها قرار می گیرد توسط منبع تغذیه رانشگر با ولتاژ بالا شارژ می شود. اولین مرحله برای شروع یک پالس PPT احتراق است. جرقه زن رانشگر که در نزدیکی پیشرانه نصب شده است، جرقه ای تولید می کند که به تخلیه ESU بین الکترودها اجازه می دهد تا پلاسما ایجاد کند. این پلاسما را تخلیه اصلی می نامند. تخلیه اصلی قسمت سطحی پیشران جامد را از بین می برد و یونیزه می کند و یک پلاسمای پیشران ایجاد می کند. سپس این پلاسما توسط نیروی لورنتس از رانشگر شتاب می گیرد. نیروی لورنتس نیرویی است که از برهمکنش میدان مغناطیسی و جریان الکتریکی ایجاد می شود. همان طور که پیشرانه مصرف می شود، یک فنر، پیشران جامد باقی مانده را به جلو می راند و منبع سوخت ثابتی را فراهم می کند.سیستم محرکه الکتریکی
سیستم PPT شامل یک منبع انرژی، واحد پردازش توان (PPU)، واحد ذخیره انرژی و خود رانشگر است. منبع تغذیه می تواند هر منبع انرژی الکتریکی باشد. سلول های خورشیدی به طور کلی مورد استفاده قرار می گیرند، زیرا رانشگر در سطوح توان پایین کار می کند. PPU نیروی فضاپیما را برای شارژ واحد ذخیره انرژی PPT تبدیل می کند. واحد ذخیره انرژی، پالس های جریان بالا را از طریق رانشگر برای انجام کار فراهم می نماید.گذشته
فضاپیمای Zond 2 که توسط اتحاد جماهیر شوروی در سال 1964 به فضا پرتاب شد، اولین مورد استفاده از PPT در فضا بود. در سال 1968، ایالات متحده سیستم PPT خود را بر روی ماهواره LES - 6 راه اندازی کرد. ماهواره های LES - 8 و 9 در سال 1976 پرتاب شدند و PPT ها را برای مانورهای ایستگاه داری آزمایش کردند. فضاپیمای برنامه بهبود ترانزیت (TIP) (Transit Improvement Program) از PPT برای مانورهای تصحیح کشش در TIP II (پرتاب در 1975) و TIP III (پرتاب در 1976) استفاده کرد. نیروی دریایی ایالات متحده ماهواره های ناوبری نیروی دریایی (NNS) (Navy Navigation Satellites) را توسعه داد که اولین سیستم ماهواره ای ناوبری شد. سه ماهواره NNS (Nova 1 که در سال 1981 پرتاب شد، Nova 3 که در سال 1984 پرتاب شد و Nova 2 که در سال 1988 پرتاب شد) از PPT برای مانورهای تصحیح کشش استفاده کردند.اکنون
تصویر: رانشگر پلاسما پالسی EO - 1 مدارگرد زمین. اعتبار: ناسا
فضاپیمای Earth Observing 1 (EO - 1) که در سال 2000 پرتاب شد، از یک PPT دو محوره برای کنترل محور و مدیریت حرکت استفاده می کند. EO - 1 PPT در مرکز تحقیقات ناسا گلن توسعه یافته و توسط شرکت هوافضای پرایمکس تولید شده است. چندین آزمایش از رانشگر EO - 1 در گلن برای نشان دادن قابلیت حیات، مشخص کردن آلودگی سطوح فضاپیما و تأیید عملکرد به عمل آمد.PPT EO - 1 قادر به تولید نیروی رانش 860 میکرونیوتن (0.0002 پوند) و سرعت اگزوز بیش از 13700 متر در ثانیه (30600 مایل در ساعت) است، در حالی که تنها 70 وات توان مصرف می کند. برای در نظر گرفتن این اعداد: نیروی این سطح از رانش بر روی فضاپیما همان نیرویی است که با نگه داشتن یک کاغذ 2 در 2 اینچی در دست خود و این سرعت اگزوز در یک فضا احساس می کنید. به این طریق، در محیطی بدون جو، می تواند تقریباً دو برابر سرعت شاتل فضایی (18000 مایل در ساعت) به حداکثر سرعت برسد.
آینده
تصویر: نمای کلی عملیات PPT: (1) واحد ذخیره انرژی. (2) جرقه زن. (3) میله سوخت. (4) شتاب پلاسما. اعتبار: ناسا
تحقیقات ناسا در موردPPT ها بر تأیید سیستم ها و اجزای برنامه های کاربردی پرواز فضایی متمرکز است. آزمایشهای عمر قطعات در گلن بهعنوان تلاشی ترکیبی با صنایع یونیسون برای ارتقای آخرین وضعیت در PPU، واحدهای ذخیرهسازی انرژی و سوختهای بهبودیافته در حال انجام است. با ادامه تحقیقات، PPTهای کارآمدتر و دارای عمر طولانی تر توسعه خواهند یافت. این پیشرفتها فضاپیما را قادر میسازد تا مانورهای دقیقی را به طور مؤثر انجام دهد و امکان انجام مأموریتهای طولانی را فراهم کند.
منبع: رابرت وینگلی، ب. رِیس رابرسون، NASA
مقالات مرتبط
تازه های مقالات
ارسال نظر
در ارسال نظر شما خطایی رخ داده است
کاربر گرامی، ضمن تشکر از شما نظر شما با موفقیت ثبت گردید. و پس از تائید در فهرست نظرات نمایش داده می شود
نام :
ایمیل :
نظرات کاربران
{{Fullname}} {{Creationdate}}
{{Body}}